态到另一个状态的转换的非随机过程。
看到这里。
有些同学是不是感觉很熟悉?
没错。
这是一个定义上与马尔科夫链完全相反的模型,描述的是一种很小区间内的定性可能。
而这种模型,一般只会出现在.......
超级超级小的微观领域。
想到这里。
徐云忽然灵光一闪。
“微观领域,衰变积分?”
只见他飞快的拿起笔,在其中另一张纸上飞快的写下了一行字:
y(xn+1)?y(xn)/h≈f(xn,y(xn))
y(xn+1)=y(xn)+hf(xn,y(xn))
写完这些后。
徐云拿出笔记本,打开了一个定制版的物理软件。
这是科大研究生才能申请的量化计算程序,以高斯做的量化计算为核心基础运行,可以计算一些精度有限的模型,名字叫做极光。
极光中录入了目前已发现的所有微粒的运行轨迹,连接的是科大同辐那边的一台次级服务器。
随后徐云通过Mathpix将自己写好的公式识别、传输入内,按下了回车键。
十二秒后。
一个数字出现在了徐云面前:
0。
这个0可不是无一可靠的那个0,而是指系统中没有找出符合这种征值的结果。
“奇怪了......”
看着面前的0,徐云一边转着笔,一边疑惑自语:
“没有符合征值的结果...方程组也没输入错误,难道说我的想法出问题了?”
按照他的思路。
第一部分方程组在化简后出现了一个观测态方程,他便试探性的进行了一次积分化简。
最终他用差商近似导数推导出的周期,最终有些疑似符合光场中微粒的衰减量级。
换而言之.......
似乎符合某种粒子的运行轨迹。
但眼下极光得出的结果,却是一个0?
亦或者说......
这是一个此前没有被发现过的新粒子?
众所周知。
根据目前粒子物理标准模型,我们暂时认为的基本粒子一共有61种,被分成四个部分:
夸克。
轻子。
规范玻色子。
以及Higgs粒子。
当然了。
还有一个未证实的粒子,即“引力子”。
它是假设的粒子,用于传递引力相互作用,此处便不多赘述。
其中构成物质的是费米子,包括夸克和轻子。
夸克可通过强相互作用形成重子和介子,重子中质子和中子可以构成原子核,原子核也是费米子。
同时原子核和电子可以构成原子,进而组成我们看到的世界。
传递相互作用的则是规范玻色子,用于在费米子之间传递相互作用力。
比如光子,便是我们最熟悉的一种规范玻色子。
赋予基本粒子质量的是Higgs粒子——这个细说起来比较复杂,比如虽然基本粒子的质量来自于Higgs粒子,但是宇宙可见质量的主要来源却是强相互作用,属于博士阶段的概念,总之概念上了解一下就行了。
而在另一方面。
这些基础粒子能组成非常多的复合粒子,复合粒子的多少取决于你在说哪个尺度。
如果是在原子这个层面上,这样光是每一种元素和它们的同位素就有n种了。
如果你特指亚原子粒子,那