尔顿—田猜想和偏零阶估计猜想。
而上边两个猜想,就可以划分在第五等,虽然比不上第四等,却也非常重要。
再往后的猜想,其研究价值不大,可不将其弄懂,又感到可惜,犹如鸡肋一样。
但这不是重点……
重点是……
江南在证明出两个一等猜想,一个二等猜想,三个三等猜想之后。
又准备在国际数学家大会的一小时报告中,当众证明第七个猜想?
这……
特么是人能干的么?
如果江南证明的是五六等的常规性猜想也就罢了,还勉强可以接受。
但如果江南证明的是四等及以上,那他们的小心脏,真有些受不了的节奏。
而下一秒。
在场许多人都瞪大眼睛,张大嘴巴,下巴都要落到地上,纷纷感到窒息。
只因……
江南抬笔在黑板顶部,写下了《克拉梅尔猜想的证明》九个大字。
“what?
?”
“克拉梅尔猜想?”
“他居然要证明克拉梅尔猜想?”
“这特么的,他莫不是要疯了么?”
“这克拉梅尔虽然不是第一二等的猜想,但也是非常有名的第三等猜想好吧!”
“从提出到现在都八十多年了,一直没找到啥破解的思绪,而他竟然要……”
在场有一个算一个,加起来近三千号人,几乎都被江南的疯狂举动吓到了。
啧啧!
那特么可是三等猜想啊!
江南都已经证明了三个,结果现在又要证第四个,真当三等猜想是大白菜不成?
他们都感觉,不是这个世界疯了,就是他们疯了,亦或者是江南疯了。
众所周知猫和耗子是天敌,又有谁曾见过耗子能给猫当伴娘的?
但今天,或许能见到。
比如坐在某角落里的白人威尔,第一时间就站了起来,盯着台上江南的背影,目光灼热无比,那是惊讶,紧张和期待。
虽然对于江南要当众证明第七大道猜想,白人威尔感到难以置信。
但从数学家的角度上说,他是多么的希望,江南能再一次创造奇迹。
那江南能创造奇迹么?
答案自然是……
能!
且必须能啊!
不就是一个小小的克拉梅尔猜想而已,将其解出来,那不是分分钟的事?
也许有很多大大对这个猜想很不熟悉,毕竟之前提到的次数不多。
甚至有些大大会说这样写非常突兀生硬,感觉是为了装逼而装逼。
毕竟之前江南都没研究过这个猜想,怎么突然就要在大会上当众证明了?
实际上……
这可真不是为了装逼而装逼。
且真没有太突兀生硬。
而是先前早有伏笔。
同样在383章就说过,孪生素数猜想与梅森素数猜想,ABC猜想,哥德巴赫猜想,黎曼猜想并称素数方面五大猜想。
其中周氏猜测,就是针对于梅森素数分布的一种猜测,可以等同。
而克拉梅尔猜想是什么?
这个想必大家应该都听说过吧?
?
?
就是钟表王国数学家哈拉尔德·克拉梅尔在1937年提出。
“这猜想是说:limsup(n至∞){p(n+1)-pn}/(lnpn)^2=1。
这里pn代表第n个素数。”
大家没看错。
该猜想就是如此的简单。
无非就是这么一个小小公式罢了。
如果还不理解,那就捕捉一个重点,这个猜想,是针对于素数而言。
而素数……
那不正是江南的拿手好戏么?
对于别人来说。